



# **Simulation Status**

Bi-weekly Collaboration Meeting, Thursday 2021-09-02

The Software and Computing WG Conveners:
Andrea Bressan (University of Trieste and INFN),
Dmitry Romanov (Jefferson lab),
Sylvester Joosten (Argonne National Laboratory),
Whitney Armstrong (Argonne National Laboratory),
Wouter Deconinck (The University of Manitoba)

# **Full Simulation Production Status**



## Since last meeting:

- eSTARlight input file generator status fixed
- Reduced reconstructed output size
- Also copying full simulations to S3 (with hits)

## Current dev focus: debugging and resiliency

- Debugging:
  - G4Cerenkov track splitting
  - Include RICH materials in ACTS
  - Event weights and "A" records
- Resiliency: Automatic flagging/resubmit
  - Timeouts on stuck tracks (MRICH)
  - Automatic timing estimates in CI
- Efficiency: Multithreaded simulations
  - Memory use now > 2 GB / core which leaves cores budgeted at 2 GB unused

## Data on S3 and XRootD (synced upon generation):

- https://dtn01.sdcc.bnl.gov:9000/minio/eictest/ ATHENA/RECO
- mc mirror S3/eictest/ATHENA/RECO RECO
- TFile::Open("s3https://dtn01.sdcc.bnl
  .gov:9000/eictest/ATHENA/RECO")
- TFile::Open("root://sci-xrootd.jlab.org//osgpool/eic/ATHENA/RECO/...") (do not use the /osgpool directory directly)
- Geometries: master, acadia-v1.0-alpha



**Questions?** → **#software-helpdesk** 

Date



# **Geometry Update**

# Geometry versions



# Acadia-v1.0-alpha

- This is the tag in all the simulations up to now
- Mostly N0.0-B0.0-P0.0 central detector configuration
  - Misses proper ScFi calorimeter in positive endcap
  - Not enough space between RICH and solenoid
  - Barrel geometry not fully optimized for acceptance
  - Material stand-in for DIRC, X does not match BECAL
- IP version 0.4.0
  - X FF transport not yet validated

# Acadia-v1.0

- Upcoming tag for next round
- Very close to N0.0-B0.0-P0.0 central detector configuration
  - Add ScFi in positive endcap
  - Not enough space between RICH and solenoid
  - Better barrel geometry
  - Material stand-in for DIRC, matches BECAL
- Next IP version (will be 0.5.0)
  - Validated (usable!) FF region

# BigBend-v1.0

- Baseline+ configuration (work ongoing)
- Implements N1.0-B1.0-P1.0
  - M Different (hybrid) central tracking setup
  - M Different imaging layer setup in BECAL
  - Shorter RICH snout
  - Still not enough space between RICH and solenoid!
- Same IP version as Acadia-v1.0

# Acadia-v1.0 (N0.0-B0.0-P0.0)





Central tracking (negative half) 0cm to -137cm ( $\Delta$ : 137 cm) rmin: beampipe, rmax: 95cm

#### **Backward PID:**

-137 to -177cm ( $\Delta$ : 40cm) rmin: beampipe, rmax: 95cm

## Backward tracking

-177cm to -185cm (∆: 8cm) rmin: beampipe, rmax: 95cm

#### **Backward ECAL**

-185cm to -245cm (∆: 60cm)

(40cm glass blocks + 20cm for readout)

rmin: beampipe, rmax: 95cm

# Empty space

-245m to -285cm (Δ: 40cm) 30cm for DIRC expansion 10cm service gap

#### HCAL

-285cm to -390cm (∆: 105cm)

(60cm more available in negative direction)

# Acadia-v1.0 (N0.0-B0.0-P0.0)





Central tracking (positive half) 0cm to 155cm (Δ: 155 cm) rmin: beampipe, rmax: 95cm

Forward PID:

155cm to 335cm (Δ: 180cm)

vessel: rmin: beampipe, rmax 200cm snout: rmin: bmpp, rmax 92.5 → 122.5cm Snout length: 50cm. **13cm gap between** 

vessel and solenoid cryostat

Forward tracking

(needs more space for upgrades!):

335cm to 340cm (Δ: 5cm)

rmin: beampipe, rmax: dRICH rmax

Empty space

10cm service gap

Forward ECAL

350cm to 380cm (Δ: 30cm)

rmin: beampipe, rmax: solenoid rmax

HCAL

380cm to 500m (∆: 120cm)

# Acadia-v1.0 (N0.0-B0.0-P0.0)





### Central tracking

-137cm to 155cm ( $\Delta$ : 155 cm) rmin: beampipe, rmax: 95cm

(same radial parameters for backward region)

Space for 10cm service gap in front of HCAL

Barrel PID (DIRC, 16 sectors): -275cm to -155cm ( $\Delta$ : 430cm) rmin: 95cm, rmax 103cm ( $\Delta$ r: 8cm) space for expansion volume behind BECAL

Barrel ECAL (including support) -245cm to -159cm (Δ: 404cm)

rmin: 112cm, rmax: 159cm (∆r: 47cm)

#### Solenoid

-192 to 192cm (∆: 384cm)

rmin: 160cm, rmax: 224cm (∆r: 64cm)

### **Barrel HCAL**

-224cm to 324cm (∆r: 100cm)



# Reconstruction Update

# **Reconstruction Status**



# **✓** Calorimetry

- Algorithms
  - Simple Clustering, Island Clustering (2D), 2+1D Clustering, Topological Clustering (3D)
  - V Hybrid cluster merging
- Clustering benchmarks

### **///** PID

- Algorithms
  - V Fuzzy-K ring clustering
  - MRICH, DIRC, DRICH reconstruction
  - **V** Truth PID
- X PID benchmarks

## Far Forward & Far Backward

- X Integrate B0 with tracker, low Q2 tagger
- Matrix transform for Roman Pot & OMD
- Simple FastMC reconstruction for FF
- W Use registered hits for FastMC

## **774** Tracking

- Algorithms
  - Decent performance in barrel region
  - Improve tracking efficiency in endcaps
  - Tracking benchmarks
  - Incorporate B0 in ACTS
  - Setup realistic vertex reconstruction
- Tracking Benchmarks
  - V Basic benchmarks working
  - X Tracking with realistic background

#### **W** Global

- Event builder (produces ReconstructedParticle)
  - Dummy event builder to test reco chain
  - ✓ Simple tracking + truth PID event builder
  - Fast parametrized reconstruction for missing algorithms (e.g. dRICH) based on registered hits.
- Stable data model
- Cleanup/consolidate reconstruction flow

# Ways to get involved/incomplete task list



## **Reconstruction** (C++, Gaudi, ACTS, Python)

- Simple electron PID (medium/expert)
- Advanced electron PID (expert)
- Jet reconstruction (expert)
- Event subcomponent matching (medium/expert)
- RICH reconstruction (medium/expert)
- MRICH reconstruction (medium/expert)
- DIRC reconstruction (medium/expert)
- Holistic calorimeter reconstruction (expert)
- Track propagation and simple vertexing (medium/expert)
- Vertexing (medium/expert)
- Optimize tracking (medium/expert)
- Kinematic reconstruction (easy/medium)
- Far-forward reconstruction (easy/medium)
- Far-backward reconstruction (easy/medium)
- ML-accelerated algorithms (medium/expert)

## Reconstruction Benchmarks (ROOT, Python, ...)

- Validate/optimize digitization algorithms (easy)
- Clustering performance (medium)
- Subsystem performance (easy/medium)
- Overall reconstruction performance (medium)
- Study reconstructed acceptance (easy)

## **Geometry/full simulation** (XML, C++, DD4hep, GEANT)

- Detector color scheme (easy)
- Automatic marketing/publication figures (easy/medium)
- Optimize parametrization of subsystems (medium)
- Implement additional technology options (easy/medium/expert)
- Add extra support & service material (easy/medium)

## **Detector Benchmarks** (ROOT, Python)

- Validate hit multiplicities in subsystems (easy)
- Energy calibrations for calorimeters (easy/medium)
- Validate optics in DRICH (medium/expert)
- Study raw acceptance (easy)
- Validate detector material budget (easy/medium)
- Render results on dashboard webpage (all benchmarks)

## Physics Benchmarks (ROOT, Python)

- Integrate analyses from PWGs into CI framework (easy)
- Validation figures on kinematic variables (easy)
- Collect and integrate available event samples (easy)

# Tutorials and office hours





Documentation portal: doc.athena-eic.org

Full simulation tutorials

<u>eic-ip6-software-l@lists.bnl.gov</u> #software-helpdesk on Slack

- Have organized dedicated tutorial/Q&A sessions aimed at various PWGs
- 2. #software-helpdesk office hours every week: Mo-We-Fr at 2:00pm EDT <a href="https://zoom.us/j/93744567735">https://zoom.us/j/93744567735</a>.
- 3. Will keep close contact with PWGs to support swift development of analyses